
Adaptive Agent Model: an agent interaction and computation model

Abstract

Software systems must be capable of coping with

continuous requirements changes and at the same time

wisely make use of emerging components and services to

remain useful in their environment. In this paper, the

Adaptive Agent Model (AAM) approach is proposed. The

AAM uses configurable interaction models to drive

adaptive agent behaviour. The models capture user

requirements and are maintained by experts at a high

level of abstraction. The AAM interaction model has been

discussed with regard to interaction specification and

interaction coordination, in line with a coordination

language for the OpenKnowledge project. A major benefit

of using the approach is agents can dynamically choose

the right partners for interaction, and the appropriate

components and services for computation at runtime,

when a new interaction model has been configured for

them towards an emerging business goal. A simple expert

seeking scenario has been used to illustrate the approach.

1. Introduction

Business environments and business needs are

changing constantly and rapidly. Supporting software

must change if it is to remain useful in the changing

environments and maintaining customer satisfaction. The

Object Management Group’s (OMG) Model Driven

Architecture (MDA) [6][7] promotes the production of

models with sufficient details that they can be used to

generate or be transformed into executable software [10].

It proposes a Platform Independent Model (PIM), a highly

abstracted model, independent of any implementation

technology. This is translated to one or more Platform

Specific Models (PSM) based on a particular

technological implementation (e.g. specific constructs,

features of the implementation). PSM is translated into

code in a similar pattern. The automatic translation

process will rely largely on the UML 2.0 initiative, which

facilitates software modelling with more precise semantics

than its previous versions [9]. Action Semantics [11], for

example, can be used to support the definition of actions

in an executable UML behavioural model. Consequently,

models with domain requirements captured can be turned

into working code more reliably and more quickly [8].

However, as business acquisition and dynamic

collaboration is the norm and responsive evolution is the

essence today, standalone model building and rebuilding

from scratch is becoming expensive and sometimes

impossible. A system usually needs to integrate many

different components and services readily available from a

variety of sources, full specifications of them being often

inaccessible but the reuse and interoperation of them

through their published interfaces being predominant.

Such a situation changes the “requirements first”

perspective and a Construction by Configuration (CbC)

[3] [4] approach becomes appropriate, where what the

system should do is satisfied by a set of existing

components and glue code that links them. For example, a

generic commercial off-the-shelf (COTS) package

developed for hospitals in England has been adapted for a

patient management system used in Edinburgh, Scotland

under the paradigm [5]. This implies that software

requirements depend not only on what stakeholders

believe they need but also what capabilities components

already in place can provide. Hence Requirements

Engineering is tightly integrated with implementation

(Integrated Requirements Engineering [3]).

The CbC approach, however, also has its limitation, in

its reuse and reconfiguration of components for across-

domain applications. More importantly, when sources of

components and services that CbC attempts to integrate

into its single operating architecture are distributed over

the internet, we are confronted with difficulty in

coordination. For example, a flight booking agent might

have to request a remote web service provided by a credit

card company to authenticate a customer payment, before

it could issue an e-ticket by invoking a local component.

The replacement of components and services as well as

their links that become obsolete over time can be

explicitly configured with CbC, being much easier than

the traditional means of recoding the hard-coded

components, services, and their collaboration.

Nevertheless, the change of glue code will interrupt the

ongoing businesses. Moreover, components and services

distributed over various sites in the environment could be

designed for a wide range of purposes, have pre-

determined capabilities, and expose incompatible

input/output formats. Constructing a system by

configuration requires matching the published capabilities

of locally maintained components against the ever

changing requirements and letting them dynamically join

in and contribute to the interaction. Not all emerging

interactions being predictable, the selection and

coordination of the best collaborative candidates is a

complicated task and determined to be error-prone if done

manually. Therefore, a high level interaction model of the

system must be developed in place of glue code and

maintained at the business level in order to guide the low

level capabilities-to-requirements matching. The

OpenKnowledge (OK) [2] project has recognised the

importance of such a model and its use of a comparable

yet more advanced architecture over CbC is discussed in

this paper.

To conclude, MDA can be viewed as requirements-to-

capabilities generation while CbC can be viewed as

capabilities-to-requirements matching. The former

approach has not taken into account the need of dynamic

interoperation of disparate components and services in the

system under development. This prevents full reuse of

existing infrastructures. The later has ignored a broader

interaction model of components and services within the

system. Thus it demands extra glue code management. We

put forward the Adaptive Agent Model (AAM) approach

that encompasses advantages of both described

approaches but avoids their limitations.

2. The Adaptive Agent Model and

OpenKnowledge

The Adaptive Agent Model has been developed for

large business applications to cope with changing business

requirements and to ease the continuous maintenance of

supporting software [12]. Briefly, AAM is a methodology

that guides the building of an organised hierarchy of

business knowledge models [22] to drive adaptive agent

system behaviour. The models originate from business

requirements, are interpreted/executed by agents at

runtime, and are under continuous maintenance by

business people. Tools have been developed to support

the documentation and maintenance of models. Existing

object-oriented infrastructures can be reused to support

agents to execute business requirements captured in

models. Rule is used as a central AAM model element.

They are directly derived from functional requirements

specification [12].

The AAM approach was intended to add adaptivity to

single large object-oriented software systems. However, it

can be easily adapted for use in distributed environments

such as OpenKnowledge [2]. The tailored rule-based

interaction models in AAM are reconfigurable and agents

interpret their behaviour dynamically from them

(requirements-to-capabilities). Moreover, agents as high

level abstractions, make use of a combination of exiting

components and services to meet their required

functionalities (capabilities-to-requirements). The running

AAM system is distributed heterogeneously.

In a heterogeneous environment, numerous constructs

of a variety of types (objects, services, and agents) are

available via independent development. Alternatives from

competitive service providers can be explored for (re)use

towards evolving business purposes. Apart from (1)

component/service/agent providers and (2) end users, a

third important role might be played in such a system by

interaction model designers. They have application

domain knowledge, choose components from alternatives,

and specify their interactions to fulfil business goals.

Although standard languages exist for describing

component interfaces or defining interactive message

passing protocols, for instance, DAML-S for Web

Services and FIPA ACL and KQML for MAS, their usage

is limited in their specific areas. So far no mechanism for

coordinating and interoperating disparate components has

been provided. The difficulty becomes more severe if

selecting the right components and specifying cooperation

towards an emerging business goal must be accomplished

in a timely way and dynamically. The OpenKnowledge

(OK) project [2] proposes a new form of knowledge

sharing based on declarative interaction, the specification

of which can be transmitted and interpreted by peers

involved in interaction at runtime. Each peer appearing in

the OK system is equally important, having individual

capabilities, and being able to be automatically involved

in emerging interactions according to their semantic

description. The major advantage of the proposed

framework is that already established software paradigms

are extended and integrated such that their interaction

becomes automatic and the change of the interaction only

involves the change of the interaction specification.

Components in the OK system cannot interact with

each other automatically simply by using descriptions of

individual components coupled towards a given goal. The

acquisition of two types of knowledge is vital in the

proposed framework. An Interaction Specification

controls the message passing from one component to

another. This is done by associating their input and output

in the control flow and by the components collectively

contributing to the eventual goal of business. Interaction

Coordination provides a form of coordination among

components so that, when a component is found to be

useful it can fit into the interaction with matching input

and output, as expected by other components through the

coordination. Note that all components have already been

developed prior to the emerging interaction.

Interaction Specification and Interaction Coordination

should be dynamically defined and amended (possibly at

runtime) by interaction model designers. This is based on

knowledge about the business domain and employment of

the available components currently provided by

component providers or developers. The exchange of

employed components in interactions or the redefinition

of interactions brings dynamic effects transparent to end

users. New components can be freely added to the system

and three roles, namely, end users, interaction model

designers, and component providers can freely join the

system.

OpenKnowledge uses the Lightweight Coordination

Calculus (LCC) language to specify agent interaction and

role playing processes. LCC is a simple design language

for expressing interaction protocols. A primary aim of

LCC is to interfere as little as possible with the design and

operation of individual agents [16]. LCC based interaction

model design is done by knowledge engineers, who have

skills in logic programming. The direct use of logic has its

advantages for research purposes but in practice it needs

to be associated with a more accessible interchange

language [13]. For real business applications, business

people (possibly being interaction model designers) want

to control their own businesses opportunistically at

runtime. The specification of how businesses operate

should be accessible to the wide range of software

engineers and preferably to business people. The AAM

modelling approach complements LCC in this aspect as

we show in the next section, where UML and XML style

model declaration and message exchange is enabled.

Business-oriented tool support is described in [12].

Another major advantage of using AAM to accompany

LCC lies in its added adaptivity that the current LCC

protocols need [13]. Replacement of a section of protocol

by an individual agent with another section within an

interaction when certain business conditions change is

difficult for LCC at the moment but inherently available in

AAM. The interaction model specification and

coordination of AAM is friendly to interaction model

designers and highly adaptive to agents. We discuss the

AAM models along with the complementary LCC

protocols. A simple example adapted from the one in the

OpenKnowledge manifesto [2] is used for illustration.

3. The AAM approach

Example: Suppose someone in the University of

Southampton wants to find an expert on multimedia

annotation in the UK. If the expert is found to be local in

the university, a meeting will be attempted. Otherwise the

expert will be contacted by telephone. Suppose also all

UK expert information has been registered nationwide in a

database that can be accessed by a component available in

the system. By passing the country (UK) and discipline

(multimedia annotation) of the expert, the name of the

expert will be obtained. If multiple experts are found, the

first one is considered. Additionally, a Web Service that

returns the address and telephone number of a person

(assuming the name is known) has been provided.

3.1 Notions and Notations

The AAM framework built upon the notions and

notations outlined in Table 1 has a three-layered

architecture. The first layer consists of agents interacting

with one another by passing messages, using the

behavioural knowledge from the next layer. The middle

layer is a structured knowledgebase of rules, supplying to

agents from the previous layer and referring to the

components from the next layer. The last layer consists of

computational units, ready to be invoked to facilitate the

execution of the interaction model. The knowledge in the

middle layer is expected to be updated continuously

during the running of the system corresponding to

changing requirements at runtime.

Table 1. Notions and notations of the AAM
Interaction
model

A protocol model that describes
the interaction process of multiple
agents aimed at a common goal.

Agent

A high level abstraction that
conceptually has common goals
shared with other agents and

computationally has responsibilities
for contributing to the goals. Rules
are defined that decide the roles
an agent should play in a certain
interaction aimed at a certain goal
and the low level computational
units should be invoked in the

process. Object components, Web
Services, and even other agents
can all be used by an agent.
Agents interact with one another
by passing messages, the
processing and producing of which
is also determined by rules.

Rule

A requirement capture unit that

externalises agent knowledge and
is configurable at runtime by
domain experts. Agents use rules
to understand and respond to
messages, make decisions, and
collaborate with each other. A
collection of rules compose and
define agent interaction models.

Various rules can be defined for a
single agent to play different roles
in different interactions models.

Object
component
and Web
Service

Traditional passive components
that respond to active agents when
they are invoked, assisting the
running agents to behave. The
invocation of these low level units

is defined in rules.

Message

An information container passing
between agents. Messages are
known by agents that create them
and are expected by agents that
receive them, if related rules are
defined. String, XML fraction or

even objects can be encoded in
them. The passing of a message
indicates the sender has made its
contribution towards a business
goal and now the receiver takes its
responsibility to contribute to the
same overall goal.

Having defined the AAM framework of its notions and

notations, we start the discussion of Interaction

Specification and Interaction Coordination with regard to

the given example.

3.2 Interaction Specification

Figure 1 specifies an interaction model. It describes an

interaction towards a goal; the required agents and their

associated rules (which decide role playing; component

and service invocation; as well as message passing). The

specification of rules shapes the control structure of the

interaction. They should be made configurable by human

and executable by agents. R2 has its notion and notation

introduced as a rule in general in Table 1. The

specification of this sample rule is given in Figure 2 and it

is assumed that Expert. get_expert (c, d) is a published

component interface.

Figure 1. The Interaction Specification of the

example
Rule R2
Owner Agent:

 Expert finder agent
Use Context:
 Interaction model: Request a discussion with an expert
Role Description:
 Look for the name of an expert (The rule decides its owner agent
should play this particular role in the interaction model it is currently
involved)
Role Playing:

 Triggering Event:
 Respond to: Southampton student agent
 Incoming message: Look for an expert (country: c, discipline: d)
 Processing:
 Component use: Expert
 Invocation call: Expert. get_expert (c, d)
 Return result: Expert e

 Further Action:
 Request to: Information collector agent
 Outgoing message: Look for the contact info of the expert (expert:
e)

Figure 2. The specification of a rule
In the interest of conciseness, only the fundamental

rule modelling feature is outlined in this paper. We allow

in the specification, among other additional constructs,

multiple {condition, action} couplets, where different

actions can be taken in different corresponding conditions.

That is useful for R4 in the example and the full

description of the framework can be found in [12]. The

principal aim of the AAM is not to propose yet another

modelling language (for example UML) for a specific

programming language. Rather, AAM generically

describes the dynamic integration and interoperation of

disparate components and services in evolving systems.

The following clauses express the models of the same

interaction in the OpenKnowledge LCC language.
a(R1(c,d,s),SSA)::

lookup_expert(c,d) ⇒ a(R2,EFA) then
contact(c,d,a,p) ⇐ a(R3,ICA) then
a(R4(a,p,s),SSA)

a(R2, EFA)::
lookup_expert(c,d) ⇐⇐⇐⇐ a(R1,(c,d,s),SSA) then
lookup_contact(c,d,e) ⇒⇒⇒⇒ a(R3,ICA) ←get_expert(Expert,c,d,e)

a(R3, ICA)::
lookup_contact(c,d,e) ⇐ a(R2,EFA) then
contact(c,d,a,p) ⇒ a(R1,(c,d,s),SSA)

←get_info(InfoCollectionService,e,a,p)

a(R4(a,p,s),SSA)::

request_appointment(a) ⇒ a(R5,EA)←a∈s or
call(p) ⇒ a(R5,EA) ←a∉s

Figure 3. LCC clauses for the same interaction
Briefly, a(Ri, Ai) :: Def denotes that an agent (type) Ai

plays a role Ri as defined in Def. Def describes the

message passing behaviour constructed using the

following forms: Defj then Defk (Defj satisfied before

Defk), Defj or Defk (either Defj or Defk satisfied), or Defj

par Defk (both Defj and Defk satisfied). In the Def, Ml ⇒

Am denotes that a message Ml is sent to agent Am while Ml

⇐ Am denotes that a message Ml is received from agent

Am. Also in the Def, ←Consn denotes that a constraint

must be satisfied before the clause prior to it. For a full

LCC dialogue framework description, please refer to: [13]

[16].

The explanation of the definitions of R1, R2, R3, and

R4 in LCC for our example using this framework is as

follows. The Southampton student agent (SSA) initially

plays the role R1 by sending a lookup expert message

with country c and discipline d as parameters to the Expert

finder agent (EFA). SSA is now waiting for a message

from the ICA. In the meantime, on receipt of the message

from the SSA, EFA responds by playing role R2. It

obtains an expert with his/her name by invoking a

get_expert() method of an Expert component, passing the

c and d parameters from SSA. The expert e along with the

original c and d parameters are encoded in a lookup

contact message, sending to the Information collector

agent (ICA). In a similar means, the ICA invokes an

InfoCollectionService to get the address and phone

number of the expert, passing them to the SSA. On receipt

of the message with contact information, SSA becomes

active again and will change its role from R1 to R4. That

role tells the SSA to request an appointment with the

expert if he is within the range of Southampton

University; otherwise the SSA will make a phone call to

the expert in a remote site.

As illustrated above, AAM rule definitions and LCC

clauses can equally express interactive message passing

behaviour as associated with agent roles. An agent role

playing behaviour within the context of a particular

interaction model (as shown in the second LCC clause in

Figure 3) can be derived from a rule specification (as

shown in Figure 2). The triggering event part of the rule

determines the incoming message passing pattern in LCC;

the processing part of the rule determines the constraint

solving pattern in LCC; and the further action part of the

rule determines the outgoing message passing pattern in

LCC. The overall reaction pattern and the constraint

solving involved in it structure the AAM rule and LCC

represents the rule construct in its logic expression.

The LCC language itself, however, does not assume

any specific mechanism for agents to judge constraint

satisfaction which is left up to the local agent

implementation. In contrast, this computational model is

directly specified by external component/service usage in

integrated rules. They explicitly tell agents which

computational units they should invoke in interactions.

Knowledge is maintained in rules and will be changed

when, for example, new services become available.

Coordination of computation in matching inter-agent

input/output is also the responsibility of rules (detailed in

Section 3.3). LCC and its variants, as a form of logic

programming language, have received support from

analytical techniques such as model checking [17]. Rule-

oriented AAM models ease agent interaction role

configuration and alternative component/service selection

in agent-oriented UML models. The two languages thus

are complementary.

3.3 Interaction Coordination

An Interaction Specification specifies a pattern through

which agents interact. What’s equally important is the

coordination of the involved computational units, in our

example, the component “Expert” and service

“InfoCollectionService”, selected by R2 and R3 for EFA

and ICA in their interaction. Agents can be developed

from multiple agent platforms and components they use

can be written in a range of languages, the collaboration

of which is unknown to their original designers. We must

coordinate the message passing behaviour, so that the

output of one agent resulting from the computation of one

component can be useful as the input of another agent,

where another component that agent uses can take the

previous computation result in an appropriate form for its

own computation. If different languages are spoken, then

ontology matching might be required. Ontology

recognition and translation among interactive agents being

an engineering issue for constraint solving as associated

with the LCC dialogue framework, the matching of

component/service input/output is identically crucial for

AAM interaction coordination or any other knowledge

interchange system. Though ontology matching is not the

main topic of the paper, the following provides a scheme

of how AAM as a technology-independent approach, can

support the coordination.

Figure 4. Domain-independent ontology

The conceptual model of Figure 4 defines a domain-

independent ontology that consists of a set of cross-

domain reusable language terms that all agents shall use to

act upon interaction specifications. Encapsulated in event

and action messages are domain-specific ontology,

instances of which are populated in agent conversation

while agents communicate at runtime. The defined graph

provides an envelope in which any domain specific

contents can be used in conversation. Only agents in a

specific domain are associated with the related domain

ontology. This allows an extensible ontology to be later

developed for agents assigned to a new domain and its

application using the existing agent architecture. This

requires a minimum set of common agent knowledge and

the core agent architecture becomes easy to maintain.

The UML style of AAM interaction models is friendly

to human experts for reading and configuration. They also

need to be in a form suitable for agents to interpret and

execute, upon disparately designed components and

services. Based on the two sets of ontology, XML-based

rule definitions are used in our AAM models to support

model interpretation and execution. These are: 1) suitable

for machine processing; 2) unique for message

interchange across platforms; 3) enabling for

interoperation. Figure 5 shows such a rule definition for

our example. XML schema corresponding to the

conceptual model is omitted due to the space limit but can

be found in [23].

In a business environment, the established CORBA and

IDL architecture [6] enables interoperation by compiling

exchange message formats into programs. In order to

permit the exchange of structured data only known locally

at runtime in distributed systems, a typical method is

described in [20]. This involves: (1) discovering the

metadata for message transmission; (2) binding of

program objects to the metadata; (3) marshalling and

unmarshalling of data. AAM rules facilitate the

coordination of components and services without extra

components (discovery and so on) or processes (any

process other than the rule processing). When agent EFA

and ICA interact using R2 and R3 respectively, a shared

schema is specified in the action message of R2 and the

event message of R3. Both agents expect this schema so

that they can exchange information without external

translation. In this case, it is a lookup contact message

with expert first name element supplied before last name

element. During the processing of rules, the internal

representations will be converted to the XML structures

according to the common schema and vice versa. The

modifiable nature of rules allows, when component

interfaces change, the reconfiguration of exchange

message format between a pair of agents that start using

the new format immediately.
- <rule>

 <name>R2</name>

 <interaction-protocol>

 Request a discussion with an expert
 </interaction-protocol>

 <owner-agent>Expert finder agent</owner-agent>

 - <global-variable>

 - <var>

 <name>c</name>
 <type>Country</type>
 </var>
 - <var>

 <name>d</name>
 <type>Discipline</type>
 </var>
 - <var>

 <name>e</name>
 <type>Expert</type>
 </var>
 </global-variable>
 - <event>

 - <message>

 <from>SSA.R1</from>

 - <content>

 - <lookup_expert>

 <country>c</country>
 <discipline>d</discipline >
 </lookup_expert >

 </content>
 </message>
 </event>
 <processing>
 e = Expert.get_expert(c,d)
 </processing>
 - <action>

 - <message>

 <to>ICA.R3</to>

 - <content>

 - <lookup_contact>

 - <expert>

 <first_name>e.first_name</first_name>
 <last_name>e.last_name</last_name>
 <expert>
 </lookup_contact >
 </content>
 </message>
 </action>
 <priority>5</priority>
 </rule>

Figure 5. Rule specification in XML
For a detailed explanation of rule execution process by

agents, please refer to [12]. That literature also provides

AAM deployment architecture. Pseudo code of the

example rule being evaluated, interpreted and executed by

an agent deployed by AAM is shown in Figure 6.
thisAgent. addBehaviour (Rule thisRule) {

thisBehaviour. setPriority (thisRule. getPriority ());

Country c;

Discipline d;

Message m = thisAgent. receiveMessage ();

while (m != null)

{

 Agent fromAgent = m. getSenderAgent ();

 if (fromAgent. equals

 (thisRule. getEvent (). getMessage (). getFromAgent ()))

 {

 XMLSchema schemaIn =

 thisRule. getEvent (). getMessage (). getSchema ();

 XMLSchema schemaOut =

 thisRule. getAction (). getMessage (). getSchema ();

 ObjMsg lookup_expert =

 m. getContentObject (). unmarshal (schemaIn);

 c = (Country) lookup_expert. getCountry ();

 d = (Discipline) lookup_expert. getDiscipline ();

 Expert e = Expert. get_expert (c, d);

 if (e != null)

 {

 XMLMsg lookup_contact = e. marshal (schemaOut);

 Message m2 = new Message ();

 m2. setContentObject (XMLMsg);

 Agent toAgent =

 thisRule. getAction (). getMessage (). getToAgent ();

 m2. addReceiverAgent (toAgent);

 thisAgent. send (m2);

 }

 }

 m = thisAgent. receiveMessage ();

}

}

Figure 6. Pseudo code of an agent behaviour

interpreted from an XML-based rule
The XML schema based message matching contrasts

with vocabulary based ontology matching, AAM agents

running on different platforms being capable of

exchanging complex annotated messages by

encoding/decoding local objects, apart from simple

strings. Traditionally, objects are written in the same

language for mutual communication and understanding.

For example, in JADE [19], the following code might be

used to pass a List object, whose structure must be

understood both by the sender and the receiver to enable

their communication.
public void passList (List l) {

 ……

 // Fill the message content with a List l, containing the object

 fillContent(requestMsg, l);

AAM messages are platform independent and reusing

existing messaging systems is easy. XML-based

information can be used as object representation to be

filled in or extracted from FIPA Agent Communication

Language (ACL) [1] message contents. Hence, there is no

requirement for the use of the same underlying object

language for agents in different systems to understand

each other. Data binding techniques such as Java & XML

data binding [18] can be applied to convert between Java

object instances and XML instances. Similar bindings can

be applied to other programmed objects. A process called

unmarshalling while receiving a message is for the XML

data structure to be populated into member attributes of

the object, instantiated according to the XML schema just

like from its class. Conversely, a process producing XML

instances from objects is called marshalling while sending

a message. XML is used as the interchange medium for

components written in different languages. Therefore, a

list object in Java can be marshalled by an agent to XML,

transmitted over the network, and unmarshalled as a C++

object understood by another agent for its internal use.

Apart from the platform-independent message passing,

AAM is also agent behaviour implementation neutral. For

example, the current practice of defining agent behaviour

in JADE is by specifying behaviour methods in agent

classes. Built upon the established platforms and

conventions, AAM agents understand the domain-

independent ontology defined in Figure 4 and can use a

simple ontology to agent behavioural construct mapping

to execute rules [23]. When an incoming message arrives

at an agent, it retrieves a set of relevant rules and selects

the appropriate one that matches with the event to be dealt

with (by schema-matching), processes it and then sends an

outgoing message. This whole process can be coded as an

ordinary agent behaviour method but in effect it is

dynamic according to the description of the rule currently

selected in that context at execution time. In sum, the

AAM approach is applicable to any (or a combination of)

existing software infrastructure and adds adaptivity.

4. Conclusions and Future Work

Metadata has long been used as a mechanism by the

Software Engineering community to reduce duplicated

code, alleviate programming tasks, or even automatically

generate systems [15]. For example, metadata describing

class structure, property, and behaviour is used by the

Adaptive Object Model approach to generate object-

oriented systems [14]. In general, the idea is, when

requirements changes arrive, the changes captured in

metadata can be transformed to the software systems. This

is the driving force of the OMG’s MDA methodology.

Though metadata is useful in these approaches, when

manual code change is necessary because metadata cannot

cope, such change to the generated system is lost the next

time the system is to be re-generated. More importantly,

generation is only possible when all metadata about the

system is in place where the generation is performed. This

assumption does not hold for distributed heterogeneous

systems, where components and services are maintained in

remote sites but they need to be composed dynamically. In

addition, the generation of the running system presume all

composing constructs are in the same language for the

generator. Cross platform and language component and

service reuse is not supported by the mechanism.

The traditional value of metadata is inherited by our

rule-driven agent-oriented system. Rules capture user

requirements, describe how components and services from

various sources are coordinated by interaction model

designers, and drive running agent system behaviour

dynamically on the fly. The use of this enhanced metadata

shortens requirements-design-implementation software

development life cycle within our integrated framework.

Its auto-interpretation rather than auto-generation nature

guarantees the minimum maintenance efforts. The

continuous maintenance of knowledge about interaction

models rather than code is emphasised. It is business

people who are responsible to maintain their system

models in an explicit and visible manner. The

maintenance of the model is eventually the maintenance of

the software system.

A domain-independent conceptual model (Figure 4

including meta-ontology) directs agent behaviour, the

interpretation of which forms agent roles individually and

interaction models globally. A domain-dependent

conceptual model (including domain-ontology)

determines agent conversation contents, domain entities

and their associated properties, the interpretation of which

forming agent knowledge about tasks to be performed via

web service and component invocation. Consisting of

these two sets of ontology, AAM rules provide a context-

aware agent framework, in which when/what components

and services that should be used in given conditions are

captured in context. The notion of context in the physical

sense [21] (user location dependent communication

service provision, etc.) can be borrowed here and adapted

as in the conceptual sense (user need sensitive service

provision, etc.). Nevertheless, this work shares with the

context-oriented research trend some common

characteristics: context-based service association, action

triggering, and adaptation. Further development on

defining context sensitive agent behaviour upon a more

comprehensive ontology will be carried out in our OK

project.

Although full automation is the ultimate goal, we at

present emphasis human manageable models that make

use of existing components in an adaptive manner. When

interaction models are specified, alternative components

that support model execution might be discovered

automatically and selected according to a

ranking/recommendation system. Though this helps the

automation of interaction process, some kind of human

control must accompany it. For example, predictable

behaviour is vital in biomedical domains such as

HealthAgents [24]. Successful completion of a dialogue

for a given purpose cannot always be guaranteed in a

dynamic protocol passing and invitation manner if all

supporting services are automatically selected and

executed. Unreliable interaction results in this context

could possibly cause tragedy. Nevertheless, our approach

does not prohibit the semi-automatic mechanism where a

list of appropriate components/services presented to the

user interface for composition of interaction model using

these underneath facilitating component invocation after

human validation. This improves working efficiency:

interaction model designers do not need to lookup all

available services to any situation. This is also useful to

extend existing models for related purposes, e.g. the

replacement of example service with a service that can

find all national addresses enables to look for anybody to

do anything.

AAM is a non-invasive approach, its introduction of an

agent abstraction system requiring no change to existing

components and services previously designed. Any agent

could dynamically contact any component at runtime to

accomplish their roles, which is in contrast with

agentification approaches, where transducer, wrapper or

rewrite is imposed upon the given components for a one-

to-one conversion. The most distinctive characteristics of

both AAM rule modelling language and LCC language is

specifying interactions towards a given goal at runtime,

when participating agents are unaware of such an

interaction and of the roles they shall play until the model

is required to be executed. New requirements can always

be guaranteed to be deployed once they are specified, as

both interaction and computation in our MAS are

adaptive. We believe the visual modelling of AAM and

concise syntax of LCC can work together for mutual

advantages. For example, while LCC protocols are

passing around, an active agent might lookup the LCC

clause’s identically defined rule to trace runtime update,

associated with an interaction model being under

maintenance by a business expert through a visual

configuration tool. Future work includes examining such

complementary models and applying AAM to the test-bed

of MIAKT and HealthAgents.

Acknowledgements

This work is supported under the OpenKnowledge and

HealthAgents STREP projects funded by EU Framework

6 under Grant numbers IST-FP6-027253 and IST-FP6-

027213.

References

[1] Foundation for Intelligent Physical Agents,

http://www.fipa.org/.

[2] Robertson, D. et al., “Open Knowledge: Semantic

Webs Through Peer-to-Peer Interaction”, OpenKnowledge

Manifesto, 2006, http://www.openk.org/.

[3] Sommerville, I., “Integrated Requirements

Engineering: A Tutorial”, IEEE Software 22(1): 16-23, 2005.

[4] Sommerville, I., “Software Construction by

Configuration: Challenges for Software Engineering Research”,

Proceedings of the 21st IEEE International Conference on

Software Maintenance (ICSM’05), p. 9, 2005.

[5] Sommerville, I., “Construction by Configuration: A

New Challenge for Software Engineering Education”, invited

lecture, JENUI’05, Spain, 2005.

[6] Object Management Group, Inc., 250 First Ave. Suite

100, Needham, MA 02494, USA.

[7] Kleppe, A., Warmer, J. & Bast, W., MDA Explained:

The Model Driven Architecture: Practice and Promise,

Addison-Wesley, 2003.

[8] Meservy, T. & Fenstermacher, K., “Transforming

Software Development: An MDA Road Map”, IEEE Computer

38(9): 52-58, 2005.

[9] France, R., Ghosh, S. & Trong, T., “Model-Driven

Development Using UML 2.0: Promises and Pitfalls”, IEEE

Computer 39(2):59-66, 2006.

[10] Mellor, S. & Balcer, M., “Executable UML: A

Foundation for Model Driven Architecture”, Addison-Wesley,

2002.

[11] Object Management Group, “OMG Unified Modeling

Language Specification (Action Semantics)”, OMG document

ptc/02-01-09, 2002.

[12] Xiao, L. & Greer, D., “The Agent-Rule-Class

Framework for Multi-Agent Systems”, Special Issue on Agent-

Oriented Software Development Methodology, Multiagent and

Grid Systems - An International Journal, Number 4, Volume 2,

IOS Press, to appear.

[13] Robertson, D., “A Lightweight Method for

Coordination of Agent Oriented Web Services”, Proceedings of

AAAI Spring Symposium on Semantic Web Services, Stanford,

2004.

[14] Yoder, J.W. & Johnson, R., “The Adaptive Object-

Model Architectural Style”, Proceedings of the 3rd IEEE/IFIP

Conference on Software Architecture: System Design,

Development and Maintenance, pp. 3-27, 2002.

[15] Fowler, M., “Using Metadata”, IEEE Software 19(6):

13-17, 2002.

[16] Robertson, D., “A lightweight coordination calculus

for agent systems”, LNCS 3476:183-197, Springer, 2005.

[17] Walton, C., “Model checking multi-agent web

services”, Proceedings of AAAI Spring Symposium on Semantic

Web Services, California, USA, 2004.

[18] McLaughlin, B., Java & XML Data Binding, O’Reilly,

2002.

[19] JADE platform, http://jade.tilab.com/.

[20] Widener, P., Eisenhauer, G., Schwan, K. &

Bustamante, F.E., “Open Metadata Formats: Efficient XML-

Based Communication for High Performance Computing”,

Cluster Computing 5(3): 315-324, Springer, 2002.

[21] Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N.,

Smith, M. & Steggles, P., “Towards a Better Understanding of

Context and Context-Awareness”, LNCS 1707:304-307,

Springer, 1999.

[22] Xiao, L. & Greer, D., “A Hierarchical Agent-oriented

Knowledge Model for Multi-Agent Systems”, Proceedings of the

Eighteenth International Conference on Software Engineering

and Knowledge Engineering (SEKE’06), pp.651-656, 2006.

[23] Xiao, L., “The Adaptive Agent Model”, PhD thesis,

Queen’s University Belfast, 2006.

[24] HealthAgents project, http://www.healthagents.net/.

