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Abstract 
 

Software systems must be capable of coping with 

continuous requirements changes and at the same time 

wisely make use of emerging components and services to 

remain useful in their environment. In this paper, the 

Adaptive Agent Model (AAM) approach is proposed. The 

AAM uses configurable interaction models to drive 

adaptive agent behaviour. The models capture user 

requirements and are maintained by experts at a high 

level of abstraction. The AAM interaction model has been 

discussed with regard to interaction specification and 

interaction coordination, in line with a coordination 

language for the OpenKnowledge project. A major benefit 

of using the approach is agents can dynamically choose 

the right partners for interaction, and the appropriate 

components and services for computation at runtime, 

when a new interaction model has been configured for 

them towards an emerging business goal. A simple expert 

seeking scenario has been used to illustrate the approach. 

 

1. Introduction 
 

Business environments and business needs are 

changing constantly and rapidly. Supporting software 

must change if it is to remain useful in the changing 

environments and maintaining customer satisfaction. The 

Object Management Group’s (OMG) Model Driven 

Architecture (MDA) [6][7] promotes the production of 

models with sufficient details that they can be used to 

generate or be transformed into executable software [10]. 

It proposes a Platform Independent Model (PIM), a highly 

abstracted model, independent of any implementation 

technology. This is translated to one or more Platform 

Specific Models (PSM) based on a particular 

technological implementation (e.g. specific constructs, 

features of the implementation). PSM is translated into 

code in a similar pattern. The automatic translation 

process will rely largely on the UML 2.0 initiative, which 

facilitates software modelling with more precise semantics 

than its previous versions [9]. Action Semantics [11], for 

example, can be used to support the definition of actions 

in an executable UML behavioural model. Consequently, 

models with domain requirements captured can be turned 

into working code more reliably and more quickly [8].  

However, as business acquisition and dynamic 

collaboration is the norm and responsive evolution is the 

essence today, standalone model building and rebuilding 

from scratch is becoming expensive and sometimes 

impossible. A system usually needs to integrate many 

different components and services readily available from a 

variety of sources, full specifications of them being often 

inaccessible but the reuse and interoperation of them 

through their published interfaces being predominant. 

Such a situation changes the “requirements first” 

perspective and a Construction by Configuration (CbC) 

[3] [4] approach becomes appropriate, where what the 

system should do is satisfied by a set of existing 

components and glue code that links them. For example, a 

generic commercial off-the-shelf (COTS) package 

developed for hospitals in England has been adapted for a 

patient management system used in Edinburgh, Scotland 

under the paradigm [5]. This implies that software 

requirements depend not only on what stakeholders 

believe they need but also what capabilities components 

already in place can provide. Hence Requirements 

Engineering is tightly integrated with implementation 

(Integrated Requirements Engineering [3]). 

The CbC approach, however, also has its limitation, in 

its reuse and reconfiguration of components for across-

domain applications. More importantly, when sources of 

components and services that CbC attempts to integrate 

into its single operating architecture are distributed over 

the internet, we are confronted with difficulty in 

coordination. For example, a flight booking agent might 

have to request a remote web service provided by a credit 

card company to authenticate a customer payment, before 

it could issue an e-ticket by invoking a local component. 

The replacement of components and services as well as 

their links that become obsolete over time can be 

explicitly configured with CbC, being much easier than 

the traditional means of recoding the hard-coded 

components, services, and their collaboration. 

Nevertheless, the change of glue code will interrupt the 

ongoing businesses. Moreover, components and services 

distributed over various sites in the environment could be 

designed for a wide range of purposes, have pre-

determined capabilities, and expose incompatible 

input/output formats. Constructing a system by 

configuration requires matching the published capabilities 

of locally maintained components against the ever 

changing requirements and letting them dynamically join 

in and contribute to the interaction. Not all emerging 

interactions being predictable, the selection and 

coordination of the best collaborative candidates is a 

complicated task and determined to be error-prone if done 

manually. Therefore, a high level interaction model of the 

system must be developed in place of glue code and 

maintained at the business level in order to guide the low 

level capabilities-to-requirements matching. The 

OpenKnowledge (OK) [2] project has recognised the 

importance of such a model and its use of a comparable 



yet more advanced architecture over CbC is discussed in 

this paper. 

To conclude, MDA can be viewed as requirements-to-

capabilities generation while CbC can be viewed as 

capabilities-to-requirements matching. The former 

approach has not taken into account the need of dynamic 

interoperation of disparate components and services in the 

system under development. This prevents full reuse of 

existing infrastructures. The later has ignored a broader 

interaction model of components and services within the 

system. Thus it demands extra glue code management. We 

put forward the Adaptive Agent Model (AAM) approach 

that encompasses advantages of both described 

approaches but avoids their limitations.  

 

2. The Adaptive Agent Model and 

OpenKnowledge  
 

The Adaptive Agent Model has been developed for 

large business applications to cope with changing business 

requirements and to ease the continuous maintenance of 

supporting software [12]. Briefly, AAM is a methodology 

that guides the building of an organised hierarchy of 

business knowledge models [22] to drive adaptive agent 

system behaviour. The models originate from business 

requirements, are interpreted/executed by agents at 

runtime, and are under continuous maintenance by 

business people. Tools have been developed to support 

the documentation and maintenance of models. Existing 

object-oriented infrastructures can be reused to support 

agents to execute business requirements captured in 

models. Rule is used as a central AAM model element. 

They are directly derived from functional requirements 

specification [12]. 

The AAM approach was intended to add adaptivity to 

single large object-oriented software systems. However, it 

can be easily adapted for use in distributed environments 

such as OpenKnowledge [2]. The tailored rule-based 

interaction models in AAM are reconfigurable and agents 

interpret their behaviour dynamically from them 

(requirements-to-capabilities). Moreover, agents as high 

level abstractions, make use of a combination of exiting 

components and services to meet their required 

functionalities (capabilities-to-requirements). The running 

AAM system is distributed heterogeneously. 

In a heterogeneous environment, numerous constructs 

of a variety of types (objects, services, and agents) are 

available via independent development. Alternatives from 

competitive service providers can be explored for (re)use 

towards evolving business purposes. Apart from (1) 

component/service/agent providers and (2) end users, a 

third important role might be played in such a system by 

interaction model designers. They have application 

domain knowledge, choose components from alternatives, 

and specify their interactions to fulfil business goals. 

Although standard languages exist for describing 

component interfaces or defining interactive message 

passing protocols, for instance, DAML-S for Web 

Services and FIPA ACL and KQML for MAS, their usage 

is limited in their specific areas. So far no mechanism for 

coordinating and interoperating disparate components has 

been provided. The difficulty becomes more severe if 

selecting the right components and specifying cooperation 

towards an emerging business goal must be accomplished 

in a timely way and dynamically. The OpenKnowledge 

(OK) project [2] proposes a new form of knowledge 

sharing based on declarative interaction, the specification 

of which can be transmitted and interpreted by peers 

involved in interaction at runtime. Each peer appearing in 

the OK system is equally important, having individual 

capabilities, and being able to be automatically involved 

in emerging interactions according to their semantic 

description. The major advantage of the proposed 

framework is that already established software paradigms 

are extended and integrated such that their interaction 

becomes automatic and the change of the interaction only 

involves the change of the interaction specification. 

Components in the OK system cannot interact with 

each other automatically simply by using descriptions of 

individual components coupled towards a given goal. The 

acquisition of two types of knowledge is vital in the 

proposed framework. An Interaction Specification 

controls the message passing from one component to 

another. This is done by associating their input and output 

in the control flow and by the components collectively 

contributing to the eventual goal of business. Interaction 

Coordination provides a form of coordination among 

components so that, when a component is found to be 

useful it can fit into the interaction with matching input 

and output, as expected by other components through the 

coordination. Note that all components have already been 

developed prior to the emerging interaction. 

Interaction Specification and Interaction Coordination 

should be dynamically defined and amended (possibly at 

runtime) by interaction model designers. This is based on 

knowledge about the business domain and employment of 

the available components currently provided by 

component providers or developers. The exchange of 

employed components in interactions or the redefinition 

of interactions brings dynamic effects transparent to end 

users. New components can be freely added to the system 

and three roles, namely, end users, interaction model 

designers, and component providers can freely join the 

system. 

OpenKnowledge uses the Lightweight Coordination 

Calculus (LCC) language to specify agent interaction and 

role playing processes. LCC is a simple design language 

for expressing interaction protocols. A primary aim of 



LCC is to interfere as little as possible with the design and 

operation of individual agents [16]. LCC based interaction 

model design is done by knowledge engineers, who have 

skills in logic programming. The direct use of logic has its 

advantages for research purposes but in practice it needs 

to be associated with a more accessible interchange 

language [13]. For real business applications, business 

people (possibly being interaction model designers) want 

to control their own businesses opportunistically at 

runtime. The specification of how businesses operate 

should be accessible to the wide range of software 

engineers and preferably to business people. The AAM 

modelling approach complements LCC in this aspect as 

we show in the next section, where UML and XML style 

model declaration and message exchange is enabled. 

Business-oriented tool support is described in [12]. 

Another major advantage of using AAM to accompany 

LCC lies in its added adaptivity that the current LCC 

protocols need [13]. Replacement of a section of protocol 

by an individual agent with another section within an 

interaction when certain business conditions change is 

difficult for LCC at the moment but inherently available in 

AAM. The interaction model specification and 

coordination of AAM is friendly to interaction model 

designers and highly adaptive to agents. We discuss the 

AAM models along with the complementary LCC 

protocols. A simple example adapted from the one in the 

OpenKnowledge manifesto [2] is used for illustration.  

 

3. The AAM approach 
 

Example: Suppose someone in the University of 

Southampton wants to find an expert on multimedia 

annotation in the UK. If the expert is found to be local in 

the university, a meeting will be attempted. Otherwise the 

expert will be contacted by telephone. Suppose also all 

UK expert information has been registered nationwide in a 

database that can be accessed by a component available in 

the system. By passing the country (UK) and discipline 

(multimedia annotation) of the expert, the name of the 

expert will be obtained. If multiple experts are found, the 

first one is considered. Additionally, a Web Service that 

returns the address and telephone number of a person 

(assuming the name is known) has been provided. 

 

3.1 Notions and Notations 
 

The AAM framework built upon the notions and 

notations outlined in Table 1 has a three-layered 

architecture. The first layer consists of agents interacting 

with one another by passing messages, using the 

behavioural knowledge from the next layer. The middle 

layer is a structured knowledgebase of rules, supplying to 

agents from the previous layer and referring to the 

components from the next layer. The last layer consists of 

computational units, ready to be invoked to facilitate the 

execution of the interaction model. The knowledge in the 

middle layer is expected to be updated continuously 

during the running of the system corresponding to 

changing requirements at runtime. 

Table 1. Notions and notations of the AAM 
Interaction 
model  

 

 

A protocol model that describes 
the interaction process of multiple 
agents aimed at a common goal. 

Agent  
 
 
 
 

 

A high level abstraction that 
conceptually has common goals 
shared with other agents and 

computationally has responsibilities 
for contributing to the goals. Rules 
are defined that decide the roles 
an agent should play in a certain 
interaction aimed at a certain goal 
and the low level computational 
units should be invoked in the 

process.  Object components, Web 
Services, and even other agents 
can all be used by an agent. 
Agents interact with one another 
by passing messages, the 
processing and producing of which 
is also determined by rules.  

Rule  
 

 

 

A requirement capture unit that 

externalises agent knowledge and 
is configurable at runtime by 
domain experts. Agents use rules 
to understand and respond to 
messages, make decisions, and 
collaborate with each other. A 
collection of rules compose and 
define agent interaction models. 

Various rules can be defined for a 
single agent to play different roles 
in different interactions models. 

Object 
component 
and Web 
Service 

 

 
 

 

Traditional passive components 
that respond to active agents when 
they are invoked, assisting the 
running agents to behave. The 
invocation of these low level units 

is defined in rules. 

Message  

 

An information container passing 
between agents. Messages are 
known by agents that create them 
and are expected by agents that 
receive them, if related rules are 
defined. String, XML fraction or 

even objects can be encoded in 
them. The passing of a message 
indicates the sender has made its 
contribution towards a business 
goal and now the receiver takes its 
responsibility to contribute to the 
same overall goal. 

Having defined the AAM framework of its notions and 

notations, we start the discussion of Interaction 

Specification and Interaction Coordination with regard to 

the given example. 

 

3.2 Interaction Specification 
 

Figure 1 specifies an interaction model. It describes an 

interaction towards a goal; the required agents and their 

associated rules (which decide role playing; component 



and service invocation; as well as message passing). The 

specification of rules shapes the control structure of the 

interaction. They should be made configurable by human 

and executable by agents. R2 has its notion and notation 

introduced as a rule in general in Table 1. The 

specification of this sample rule is given in Figure 2 and it 

is assumed that Expert. get_expert (c, d) is a published 

component interface. 

 
Figure 1. The Interaction Specification of the 

example  
Rule R2 
Owner Agent:  

    Expert finder agent 
Use Context: 
    Interaction model: Request a discussion with an expert 
Role Description:  
    Look for the name of an expert (The rule decides its owner agent 
should play this particular role in the interaction model it is currently 
involved)  
Role Playing: 

    Triggering Event: 
        Respond to: Southampton student agent 
        Incoming message: Look for an expert (country: c, discipline: d) 
    Processing: 
        Component use: Expert 
        Invocation call: Expert. get_expert (c, d) 
        Return result: Expert e  

    Further Action: 
        Request to: Information collector agent 
        Outgoing message: Look for the contact info of the expert (expert: 
e) 

 

 

Figure 2. The specification of a rule 
In the interest of conciseness, only the fundamental 

rule modelling feature is outlined in this paper. We allow 

in the specification, among other additional constructs, 

multiple {condition, action} couplets, where different 

actions can be taken in different corresponding conditions. 

That is useful for R4 in the example and the full 

description of the framework can be found in [12]. The 

principal aim of the AAM is not to propose yet another 

modelling language (for example UML) for a specific 

programming language. Rather, AAM generically 

describes the dynamic integration and interoperation of 

disparate components and services in evolving systems. 

The following clauses express the models of the same 

interaction in the OpenKnowledge LCC language.  
a(R1(c,d,s),SSA):: 

lookup_expert(c,d) ⇒ a(R2,EFA) then 
contact(c,d,a,p) ⇐ a(R3,ICA) then 
a(R4(a,p,s),SSA) 
 

a(R2, EFA):: 
lookup_expert(c,d) ⇐⇐⇐⇐ a(R1,(c,d,s),SSA) then 
lookup_contact(c,d,e) ⇒⇒⇒⇒ a(R3,ICA) ←get_expert(Expert,c,d,e) 
 

a(R3, ICA):: 
lookup_contact(c,d,e) ⇐ a(R2,EFA) then 
contact(c,d,a,p) ⇒ a(R1,(c,d,s),SSA) 

←get_info(InfoCollectionService,e,a,p) 
 
a(R4(a,p,s),SSA):: 

request_appointment(a) ⇒ a(R5,EA)←a∈s or 
call(p) ⇒ a(R5,EA) ←a∉s 

Figure 3. LCC clauses for the same interaction 
Briefly, a(Ri, Ai) :: Def denotes that an agent (type) Ai 

plays a role Ri as defined in Def. Def describes the 

message passing behaviour constructed using the 

following forms: Defj then Defk (Defj satisfied before 

Defk), Defj or Defk (either Defj or Defk satisfied), or Defj 

par Defk (both Defj and Defk satisfied). In the Def, Ml ⇒ 

Am denotes that a message Ml is sent to agent Am while Ml 

⇐ Am denotes that a message Ml is received from agent 

Am. Also in the Def, ←Consn denotes that a constraint 

must be satisfied before the clause prior to it. For a full 

LCC dialogue framework description, please refer to: [13] 

[16]. 

The explanation of the definitions of R1, R2, R3, and 

R4 in LCC for our example using this framework is as 

follows. The Southampton student agent (SSA) initially 

plays the role R1 by sending a lookup expert message 

with country c and discipline d as parameters to the Expert 

finder agent (EFA). SSA is now waiting for a message 

from the ICA. In the meantime, on receipt of the message 

from the SSA, EFA responds by playing role R2. It 

obtains an expert with his/her name by invoking a 

get_expert() method of an Expert component, passing the 

c and d parameters from SSA. The expert e along with the 

original c and d parameters are encoded in a lookup 

contact message, sending to the Information collector 

agent (ICA). In a similar means, the ICA invokes an 

InfoCollectionService to get the address and phone 

number of the expert, passing them to the SSA. On receipt 

of the message with contact information, SSA becomes 

active again and will change its role from R1 to R4. That 

role tells the SSA to request an appointment with the 

expert if he is within the range of Southampton 

University; otherwise the SSA will make a phone call to 

the expert in a remote site. 



As illustrated above, AAM rule definitions and LCC 

clauses can equally express interactive message passing 

behaviour as associated with agent roles. An agent role 

playing behaviour within the context of a particular 

interaction model (as shown in the second LCC clause in 

Figure 3) can be derived from a rule specification (as 

shown in Figure 2). The triggering event part of the rule 

determines the incoming message passing pattern in LCC; 

the processing part of the rule determines the constraint 

solving pattern in LCC; and the further action part of the 

rule determines the outgoing message passing pattern in 

LCC. The overall reaction pattern and the constraint 

solving involved in it structure the AAM rule and LCC 

represents the rule construct in its logic expression.  

The LCC language itself, however, does not assume 

any specific mechanism for agents to judge constraint 

satisfaction which is left up to the local agent 

implementation. In contrast, this computational model is 

directly specified by external component/service usage in 

integrated rules. They explicitly tell agents which 

computational units they should invoke in interactions. 

Knowledge is maintained in rules and will be changed 

when, for example, new services become available. 

Coordination of computation in matching inter-agent 

input/output is also the responsibility of rules (detailed in 

Section 3.3). LCC and its variants, as a form of logic 

programming language, have received support from 

analytical techniques such as model checking [17]. Rule-

oriented AAM models ease agent interaction role 

configuration and alternative component/service selection 

in agent-oriented UML models. The two languages thus 

are complementary.  

 

3.3 Interaction Coordination 
 

An Interaction Specification specifies a pattern through 

which agents interact. What’s equally important is the 

coordination of the involved computational units, in our 

example, the component “Expert” and service 

“InfoCollectionService”, selected by R2 and R3 for EFA 

and ICA in their interaction. Agents can be developed 

from multiple agent platforms and components they use 

can be written in a range of languages, the collaboration 

of which is unknown to their original designers. We must 

coordinate the message passing behaviour, so that the 

output of one agent resulting from the computation of one 

component can be useful as the input of another agent, 

where another component that agent uses can take the 

previous computation result in an appropriate form for its 

own computation. If different languages are spoken, then 

ontology matching might be required. Ontology 

recognition and translation among interactive agents being 

an engineering issue for constraint solving as associated 

with the LCC dialogue framework, the matching of 

component/service input/output is identically crucial for 

AAM interaction coordination or any other knowledge 

interchange system. Though ontology matching is not the 

main topic of the paper, the following provides a scheme 

of how AAM as a technology-independent approach, can 

support the coordination. 

 
Figure 4. Domain-independent ontology 

The conceptual model of Figure 4 defines a domain-

independent ontology that consists of a set of cross-

domain reusable language terms that all agents shall use to 

act upon interaction specifications. Encapsulated in event 

and action messages are domain-specific ontology, 

instances of which are populated in agent conversation 

while agents communicate at runtime. The defined graph 

provides an envelope in which any domain specific 

contents can be used in conversation. Only agents in a 

specific domain are associated with the related domain 

ontology. This allows an extensible ontology to be later 

developed for agents assigned to a new domain and its 

application using the existing agent architecture. This 

requires a minimum set of common agent knowledge and 

the core agent architecture becomes easy to maintain. 

The UML style of AAM interaction models is friendly 

to human experts for reading and configuration. They also 

need to be in a form suitable for agents to interpret and 

execute, upon disparately designed components and 

services. Based on the two sets of ontology, XML-based 

rule definitions are used in our AAM models to support 

model interpretation and execution. These are: 1) suitable 

for machine processing; 2) unique for message 

interchange across platforms; 3) enabling for 

interoperation. Figure 5 shows such a rule definition for 

our example. XML schema corresponding to the 

conceptual model is omitted due to the space limit but can 

be found in [23]. 

In a business environment, the established CORBA and 

IDL architecture [6] enables interoperation by compiling 

exchange message formats into programs. In order to 

permit the exchange of structured data only known locally 

at runtime in distributed systems, a typical method is 

described in [20]. This involves: (1) discovering the 



metadata for message transmission; (2) binding of 

program objects to the metadata; (3) marshalling and 

unmarshalling of data. AAM rules facilitate the 

coordination of components and services without extra 

components (discovery and so on) or processes (any 

process other than the rule processing). When agent EFA 

and ICA interact using R2 and R3 respectively, a shared 

schema is specified in the action message of R2 and the 

event message of R3. Both agents expect this schema so 

that they can exchange information without external 

translation. In this case, it is a lookup contact message 

with expert first name element supplied before last name 

element. During the processing of rules, the internal 

representations will be converted to the XML structures 

according to the common schema and vice versa. The 

modifiable nature of rules allows, when component 

interfaces change, the reconfiguration of exchange 

message format between a pair of agents that start using 

the new format immediately.  
- <rule> 

      <name>R2</name>  

      <interaction-protocol> 

            Request a discussion with an expert 
      </interaction-protocol>  

      <owner-agent>Expert finder agent</owner-agent> 

  - <global-variable> 

        - <var> 

              <name>c</name> 
              <type>Country</type> 
            </var> 
        - <var> 

              <name>d</name> 
              <type>Discipline</type> 
            </var> 
        - <var> 

              <name>e</name> 
              <type>Expert</type> 
            </var> 
       </global-variable> 
  - <event> 

        - <message> 

             <from>SSA.R1</from>  

           - <content> 

                - <lookup_expert> 

                      <country>c</country> 
                      <discipline>d</discipline > 
                 </lookup_expert > 

              </content> 
          </message> 
    </event> 
       <processing> 
            e = Expert.get_expert(c,d)    
       </processing> 
  - <action> 

       - <message> 

        <to>ICA.R3</to>                  

      - <content> 

               - <lookup_contact> 

                    - <expert> 

                          <first_name>e.first_name</first_name> 
                          <last_name>e.last_name</last_name> 
                      <expert> 
                 </lookup_contact > 
        </content> 
         </message> 
    </action> 
    <priority>5</priority>  
  </rule> 

Figure 5. Rule specification in XML 
For a detailed explanation of rule execution process by 

agents, please refer to [12]. That literature also provides 

AAM deployment architecture. Pseudo code of the 

example rule being evaluated, interpreted and executed by 

an agent deployed by AAM is shown in Figure 6. 
thisAgent. addBehaviour (Rule thisRule) { 

thisBehaviour. setPriority (thisRule. getPriority ()); 

Country c; 

Discipline d; 

Message m = thisAgent. receiveMessage (); 

while (m != null) 

{ 

    Agent fromAgent = m. getSenderAgent (); 

    if (fromAgent. equals  

        (thisRule. getEvent (). getMessage (). getFromAgent ())) 

    {     

        XMLSchema schemaIn =  

            thisRule. getEvent (). getMessage (). getSchema (); 

        XMLSchema schemaOut =  

            thisRule. getAction (). getMessage (). getSchema (); 

        ObjMsg lookup_expert =  

            m. getContentObject (). unmarshal (schemaIn); 

        c = (Country) lookup_expert. getCountry (); 

        d = (Discipline) lookup_expert. getDiscipline (); 

        Expert e = Expert. get_expert (c, d); 

        if (e != null) 

        { 

            XMLMsg lookup_contact = e. marshal (schemaOut); 

            Message m2 = new Message (); 

            m2. setContentObject (XMLMsg); 

            Agent toAgent =  

                thisRule. getAction (). getMessage (). getToAgent (); 

            m2. addReceiverAgent (toAgent); 

            thisAgent. send (m2); 

        } 

    } 

        m = thisAgent. receiveMessage (); 

} 

} 

Figure 6. Pseudo code of an agent behaviour 

interpreted from an XML-based rule  
The XML schema based message matching contrasts 

with vocabulary based ontology matching, AAM agents 

running on different platforms being capable of 

exchanging complex annotated messages by 

encoding/decoding local objects, apart from simple 

strings. Traditionally, objects are written in the same 

language for mutual communication and understanding. 

For example, in JADE [19], the following code might be 

used to pass a List object, whose structure must be 

understood both by the sender and the receiver to enable 

their communication. 
public void passList (List l) { 

    …… 

    // Fill the message content with a List l, containing the object  

    fillContent(requestMsg, l); 

AAM messages are platform independent and reusing 

existing messaging systems is easy. XML-based 

information can be used as object representation to be 

filled in or extracted from FIPA Agent Communication 

Language (ACL) [1] message contents. Hence, there is no 

requirement for the use of the same underlying object 

language for agents in different systems to understand 

each other. Data binding techniques such as Java & XML 

data binding [18] can be applied to convert between Java 

object instances and XML instances. Similar bindings can 

be applied to other programmed objects. A process called 

unmarshalling while receiving a message is for the XML 

data structure to be populated into member attributes of 



the object, instantiated according to the XML schema just 

like from its class. Conversely, a process producing XML 

instances from objects is called marshalling while sending 

a message. XML is used as the interchange medium for 

components written in different languages. Therefore, a 

list object in Java can be marshalled by an agent to XML, 

transmitted over the network, and unmarshalled as a C++ 

object understood by another agent for its internal use.  

Apart from the platform-independent message passing, 

AAM is also agent behaviour implementation neutral. For 

example, the current practice of defining agent behaviour 

in JADE is by specifying behaviour methods in agent 

classes. Built upon the established platforms and 

conventions, AAM agents understand the domain-

independent ontology defined in Figure 4 and can use a 

simple ontology to agent behavioural construct mapping 

to execute rules [23]. When an incoming message arrives 

at an agent, it retrieves a set of relevant rules and selects 

the appropriate one that matches with the event to be dealt 

with (by schema-matching), processes it and then sends an 

outgoing message. This whole process can be coded as an 

ordinary agent behaviour method but in effect it is 

dynamic according to the description of the rule currently 

selected in that context at execution time. In sum, the 

AAM approach is applicable to any (or a combination of) 

existing software infrastructure and adds adaptivity. 

 

4. Conclusions and Future Work 
 

Metadata has long been used as a mechanism by the 

Software Engineering community to reduce duplicated 

code, alleviate programming tasks, or even automatically 

generate systems [15]. For example, metadata describing 

class structure, property, and behaviour is used by the 

Adaptive Object Model approach to generate object-

oriented systems [14]. In general, the idea is, when 

requirements changes arrive, the changes captured in 

metadata can be transformed to the software systems. This 

is the driving force of the OMG’s MDA methodology. 

Though metadata is useful in these approaches, when 

manual code change is necessary because metadata cannot 

cope, such change to the generated system is lost the next 

time the system is to be re-generated. More importantly, 

generation is only possible when all metadata about the 

system is in place where the generation is performed. This 

assumption does not hold for distributed heterogeneous 

systems, where components and services are maintained in 

remote sites but they need to be composed dynamically. In 

addition, the generation of the running system presume all 

composing constructs are in the same language for the 

generator. Cross platform and language component and 

service reuse is not supported by the mechanism.  

The traditional value of metadata is inherited by our 

rule-driven agent-oriented system. Rules capture user 

requirements, describe how components and services from 

various sources are coordinated by interaction model 

designers, and drive running agent system behaviour 

dynamically on the fly. The use of this enhanced metadata 

shortens requirements-design-implementation software 

development life cycle within our integrated framework. 

Its auto-interpretation rather than auto-generation nature 

guarantees the minimum maintenance efforts. The 

continuous maintenance of knowledge about interaction 

models rather than code is emphasised. It is business 

people who are responsible to maintain their system 

models in an explicit and visible manner. The 

maintenance of the model is eventually the maintenance of 

the software system.  

A domain-independent conceptual model (Figure 4 

including meta-ontology) directs agent behaviour, the 

interpretation of which forms agent roles individually and 

interaction models globally. A domain-dependent 

conceptual model (including domain-ontology) 

determines agent conversation contents, domain entities 

and their associated properties, the interpretation of which 

forming agent knowledge about tasks to be performed via 

web service and component invocation. Consisting of 

these two sets of ontology, AAM rules provide a context-

aware agent framework, in which when/what components 

and services that should be used in given conditions are 

captured in context. The notion of context in the physical 

sense [21] (user location dependent communication 

service provision, etc.) can be borrowed here and adapted 

as in the conceptual sense (user need sensitive service 

provision, etc.). Nevertheless, this work shares with the 

context-oriented research trend some common 

characteristics: context-based service association, action 

triggering, and adaptation. Further development on 

defining context sensitive agent behaviour upon a more 

comprehensive ontology will be carried out in our OK 

project. 

Although full automation is the ultimate goal, we at 

present emphasis human manageable models that make 

use of existing components in an adaptive manner. When 

interaction models are specified, alternative components 

that support model execution might be discovered 

automatically and selected according to a 

ranking/recommendation system. Though this helps the 

automation of interaction process, some kind of human 

control must accompany it. For example, predictable 

behaviour is vital in biomedical domains such as 

HealthAgents [24]. Successful completion of a dialogue 

for a given purpose cannot always be guaranteed in a 

dynamic protocol passing and invitation manner if all 

supporting services are automatically selected and 

executed. Unreliable interaction results in this context 

could possibly cause tragedy. Nevertheless, our approach 

does not prohibit the semi-automatic mechanism where a 

list of appropriate components/services presented to the 



user interface for composition of interaction model using 

these underneath facilitating component invocation after 

human validation. This improves working efficiency: 

interaction model designers do not need to lookup all 

available services to any situation. This is also useful to 

extend existing models for related purposes, e.g. the 

replacement of example service with a service that can 

find all national addresses enables to look for anybody to 

do anything. 

AAM is a non-invasive approach, its introduction of an 

agent abstraction system requiring no change to existing 

components and services previously designed. Any agent 

could dynamically contact any component at runtime to 

accomplish their roles, which is in contrast with 

agentification approaches, where transducer, wrapper or 

rewrite is imposed upon the given components for a one-

to-one conversion. The most distinctive characteristics of 

both AAM rule modelling language and LCC language is 

specifying interactions towards a given goal at runtime, 

when participating agents are unaware of such an 

interaction and of the roles they shall play until the model 

is required to be executed. New requirements can always 

be guaranteed to be deployed once they are specified, as 

both interaction and computation in our MAS are 

adaptive. We believe the visual modelling of AAM and 

concise syntax of LCC can work together for mutual 

advantages. For example, while LCC protocols are 

passing around, an active agent might lookup the LCC 

clause’s identically defined rule to trace runtime update, 

associated with an interaction model being under 

maintenance by a business expert through a visual 

configuration tool. Future work includes examining such 

complementary models and applying AAM to the test-bed 

of MIAKT and HealthAgents. 

 

Acknowledgements 

 

This work is supported under the OpenKnowledge and 

HealthAgents STREP projects funded by EU Framework 

6 under Grant numbers IST-FP6-027253 and IST-FP6-

027213. 

 

References 
 
[1] Foundation for Intelligent Physical Agents, 

http://www.fipa.org/.  

[2] Robertson, D. et al., “Open Knowledge: Semantic 

Webs Through Peer-to-Peer Interaction”, OpenKnowledge 

Manifesto, 2006, http://www.openk.org/. 

[3] Sommerville, I., “Integrated Requirements 

Engineering: A Tutorial”, IEEE Software 22(1): 16-23, 2005. 

[4] Sommerville, I., “Software Construction by 

Configuration: Challenges for Software Engineering Research”, 

Proceedings of the 21st IEEE International Conference on 

Software Maintenance (ICSM’05), p. 9, 2005. 

[5] Sommerville, I., “Construction by Configuration: A 

New Challenge for Software Engineering Education”, invited 

lecture, JENUI’05, Spain, 2005. 

[6] Object Management Group, Inc., 250 First Ave. Suite 

100, Needham, MA 02494, USA. 

[7] Kleppe, A., Warmer, J. & Bast, W., MDA Explained: 

The Model Driven Architecture: Practice and Promise, 

Addison-Wesley, 2003. 

[8] Meservy, T. & Fenstermacher, K., “Transforming 

Software Development: An MDA Road Map”, IEEE Computer 

38(9): 52-58, 2005. 

[9] France, R., Ghosh, S. & Trong, T., “Model-Driven 

Development Using UML 2.0: Promises and Pitfalls”, IEEE 

Computer 39(2):59-66, 2006. 

[10] Mellor, S. & Balcer, M., “Executable UML: A 

Foundation for Model Driven Architecture”, Addison-Wesley, 

2002. 

[11] Object Management Group, “OMG Unified Modeling 

Language Specification (Action Semantics)”, OMG document 

ptc/02-01-09, 2002. 

[12] Xiao, L. & Greer, D., “The Agent-Rule-Class 

Framework for Multi-Agent Systems”, Special Issue on Agent-

Oriented Software Development Methodology, Multiagent and 

Grid Systems - An International Journal, Number 4, Volume 2, 

IOS Press, to appear. 

[13] Robertson, D., “A Lightweight Method for 

Coordination of Agent Oriented Web Services”, Proceedings of 

AAAI Spring Symposium on Semantic Web Services, Stanford, 

2004. 

[14] Yoder, J.W. & Johnson, R., “The Adaptive Object-

Model Architectural Style”, Proceedings of the 3rd IEEE/IFIP 

Conference on Software Architecture: System Design, 

Development and Maintenance, pp. 3-27, 2002. 

[15] Fowler, M., “Using Metadata”, IEEE Software 19(6): 

13-17, 2002. 

[16] Robertson, D., “A lightweight coordination calculus 

for agent systems”, LNCS 3476:183-197, Springer, 2005. 

[17] Walton, C., “Model checking multi-agent web 

services”, Proceedings of AAAI Spring Symposium on Semantic 

Web Services, California, USA, 2004. 

[18] McLaughlin, B., Java & XML Data Binding, O’Reilly, 

2002. 

[19] JADE platform, http://jade.tilab.com/. 

[20] Widener, P., Eisenhauer, G., Schwan, K. & 

Bustamante, F.E., “Open Metadata Formats: Efficient XML-

Based Communication for High Performance Computing”, 

Cluster Computing 5(3): 315-324, Springer, 2002. 

[21] Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., 

Smith, M. & Steggles, P., “Towards a Better Understanding of 

Context and Context-Awareness”, LNCS 1707:304-307, 

Springer, 1999. 

[22] Xiao, L. & Greer, D., “A Hierarchical Agent-oriented 

Knowledge Model for Multi-Agent Systems”, Proceedings of the 

Eighteenth International Conference on Software Engineering 

and Knowledge Engineering (SEKE’06), pp.651-656, 2006. 

[23] Xiao, L., “The Adaptive Agent Model”, PhD thesis, 

Queen’s University Belfast, 2006. 

[24] HealthAgents project, http://www.healthagents.net/. 


